

WTX-14014549-75-ES-50 80 Watt, Ku-Band High Power Transmitter Operation and Maintenance Manual

Mitec Telecom inc.

Designers and manufacturers of telecom and wireless products

OPERATION AND MAINTENANCE MANUAL

9000 Trans Canada, Pointe-Claire, Quebec, Canada H9R 5Z8

11		
	10	-
	ILE	4

Released

 \square

REVISION RECORD

Preliminary

Revision	ECN #	D	escription		Date	Approved
1		Engineering Release.			14 Mar 06	
CM Approv	al			TITLE:		
				WTX-14014549	75 59 6	
				14.0-14.5 G		•
				Transmi	•	
such information	i from unauthor	ttion proprietary to mitec telecom inc., or is rized disclosure, use, or duplication. Any di nitec telecom inc. may otherwise agree in w	isclosure, use	or to a third party to which mitec telecon , or duplication of this document or of a	n inc. may have a l ny of the informat	legal obligation to protect ion contained herein is
D •	<u> </u>					

Designer: G. Cyr	Date: 14 Mar 06		REV 1
Technical Writer: C. Strunga	Date: 14 Mar 06	DOCUMENT NO. 211406MA	PAGE 1 OF 37

Preface

Scope

This document covers the installation, operation, and maintenance of the WTX-14014549-75-ES-50 80 Watt, 14.0-14.5 GHz High Power Transmitter Module. It contains information intended for engineers, technicians and operators working with the transmitter module.

To make inquiries, or to report errors of fact or omission in this document, please contact **Mitec Telecom inc**. at (514) 694-9000.

IMPORTANT

Important information concerning the operation and care of this product, as well as safety of authorized operators is highlighted throughout this document by one of the following labels:

NOTE

Indicates a reminder, a special consideration, or additional information that is important to know.

CAUTION!

Identifies situations that have the potential to cause equipment damage.

WARNING!!

Identifies hazardous situations that have the potential to cause equipment damage as well as serious personal injury.

Table of Contents

1	IN	ITRODUCTION1
	1.1 I	Receiving and Inspection2
	1.1	1.1 Equipment Damage or Loss
	1.1	1.2 Return of Equipment
		Preparing for Installation
	1.3 8	Safety Precautions
2	2 1	NSTALLATION & OVERVIEW5
	2.1 (General Description
	2.2 8	Specifications
		-
	2.3 (General Considerations7
	2.4 F	Basic Mechanical Characteristics7
	2 4	
	2.4	
		Assembly and Installation8
	2.5	
	2.5	5.2 Securing the Transmitter Module
	2.6 I	Functional Overview9
	2.6	
	2.6	
	2.6	
	2.6	
~		
3		PERATION13
	3.1 I	Procedure
		1.1 Interface
4	M	AINTENANCE

4.1 Prev	entive Maintenance	15
4.1.1	Procedure	
	Transmitter Module Cooling System Preventive Maintenance	
4.1.3	Performance Check	16
4.1.4	Troubleshooting	
4.1.5	Out-of Warranty Repair	17
APPEN	XIX A	
Drawing	gs & Schematic Diagrams	A-1
APPEN	DIX B	
Serial P	rotocol	B-1
APPEN	DIX C	
Spare P	arts	C-1
APPEN	DIX D	
Bench T	est Record	D-1

List of Tables

Table 1 – Specifications	5
Table 2 –Connector Pin Assignments	14
Table 3 - Recommended Corrective Actions	

List of Figures

Figure 1 – Recommended Distance for Mounting on the Hub	9
Figure 2 - System Block Diagram	10
Figure 3 – Outline Drawing	
rigure 5 Outline Drawing	

1 Introduction

The WTX-14014549-75-ES-50 High Power Transmitter module is a highly reliable, high quality, cost efficient 80W L-Band to Ku-Band High Power Up-Converter System designed for use in VSAT applications. This line of superior products, engineered using state of the art technology, is characterized by unparalleled durability and dependability. The system also has high linearity over the full operating temperature range. The output operating frequency range is the standard Ku-Band of 14.0 to 14.5 GHz.

1.1 Receiving and Inspection

The transmitter module is designed to function outdoors and will arrive in a standard shipping container. Immediately upon receipt of the transmitter module, check the Bill of Lading against the actual equipment you have received. Inspect the shipping containers exteriors for visible damage incurred during shipping.

CAUTION!

Handle the transmitter module with extreme care. Excessive shock may damage transmitter module's delicate internal components.

NOTE

Before unpacking the shipping containers, move them near to the site where the system will be mounted. Ensure that the containers are oriented correctly in accordance with the "This Side UP "labels. Carefully remove the transmitter module and packing material from the shipping containers.

Using the supplied packing list, verify that all items have been received and undamaged during shipment. Verify that all items are complete. If there are any omissions or evidence of improper packaging, please notify **Mitec Telecom inc.** immediately.

1.1.1 Equipment Damage or Loss

Mitec Telecom Inc. is not responsible for damage or loss of equipment during transit. For further information, contact the responsible transport carrier.

When declaring equipment as damaged during transit, preserve the original shipping cartons to facilitate inspection reporting.

1.1.2 Return of Equipment

When returning equipment to Mitec for repair or replacement:

- 1. Identify, in writing, the condition of the equipment,
- 2. Refer to the sales order, Purchase Order and the date the equipment was received.

Notify Mitec Sales Administration Department of the equipment condition and obtain a Return Material Authorization (RMA) number and shipping instructions. Mitec will pay for the cost of shipping the product to the customer after the repairs are completed.

NOTE

Do not return any equipment without an RMA number. This is important for prompt, efficient handling of the returned equipment and of the associated complaint.

1.2 Preparing for Installation

Before attempting to install or use the transmitter module, we recommend that you first familiarize yourself with the product by reading through this manual. Understanding the operation of the system will reduce the possibility of incorrect installation, thereby causing damage or injury to yourself or others.

The transmitter module **must** be installed in accordance with the conditions and recommendations contained in the following sections.

When you are ready to begin your installation, use the information in Chapter 2 (Installation) as a guide for making all the required electrical connections.

1.3 Safety Precautions

Carelessness or mishandling of the transmitter module may damage the unit causing serious injury to yourself or others. Please adhere to the following:

WARNING!!

This unit is equipped with an AC power cord and plug. Do not tamper with, or attempt to reconfigure, the cord or plug supplied with the unit, as this can:

- result in personal injury
- *void the warranty*
- *cause damage to the units or related equipment.*

2 Installation & Overview

2.1 General Description

This section describes the installation and theory of operation of the transmitter module.

The module is a stand-alone Transmitter System powered from 24 VDC and 190-260 VAC power sources. It will amplify an input signal from an L-Band RF source up to a power level of 80 Watts CW in Ku-Band.

The Transmitter consists of a low power block up-converter (BUC) and a high power amplifier (SSPA.)

The SSPA consists of a Power Supply, RF Amplifier, Control System and Cooling System. The power supply provides DC voltages to the RF amplifier. The RF amplifier is capable of providing an output level of 80W, and contains over temperature shut down and protection circuits. The control system provides telemetry for the RF amplifier via an RS-485 serial interface. The cooling system fan and heat sink fins together supply and distribute a steady flow of air, preventing the internal electrical components of the SSPA from over-heating. All three components are protected by a shroud, which can be removed easily when replacing the cooling system fan. (Refer to Chapter 4). The SSPA is for outdoor use and is secured onto a mounting frame by two brackets.

2.2 Specifications

Table 1 summarizes the specifications of the WTX-14014549-75-ES-50 80 Watt, 14.0-14.5 GHz High Power Transmitter Module. For mechanical specifications, refer to the outline drawing, Figure 3 in Appendix A.

RF Performance	
Output Frequency	14.0 to 14.5 GHz
IF Frequency	950 to 1450 MHz
LO Frequency	13.05 GHz
Reference Frequency	10 MHz External Reference;
	(0 ± 5) dBm Input Power Level
Small Signal Gain	75 dB, min over temperature
Gain Flatness (small signal)	± 2.5 dB, nominal at 10 dB back-off
Gain Stability with power (expansion)	0.5 dB, max.
Output Power @ 25 [°] C	49 dBm (80 W), min at P1dB
Saturated Output Power	50 dBm, nominal
3 rd Order Intermodulation each	-26 dBc max., two equal signals at 43dBm/tone,

Table 1 – Specifications

	5 MHz separation	
Phase Noise	-60 dBc/Hz, max. @300 Hz offset of the carrier -70 dBc/Hz, max. @ 1 kHz offset of the carrier -80 dBc/Hz, max. @ 10 kHz offset of the carrier -90 dBc/Hz, max. @ 100 kHz offset of the carrier -100 dBc/Hz, max. @ 1 MHz offset of the carrier	
Integrated Phase Noise Error	2.2 degrees, max., form 300 Hz to 1 MHz SSB	
Source & Load VSWR1.5:1 max (operational), infinite at any angle damage, unconditionally stable		
Input Return Loss (cold)	-14 typ.	
Output Return Loss	-18 dB	
Spurious In-band	-50 dBc, max @ P1dB	
Spurious Out of Band	-50 dBc, max @ P1dB	
Harmonics	N/A	
RF Monitor Port (optional)	P _{OUT} -45 dBc, typical	
Power Consumption	1000 W typical	
Controls		
Gain	N/A	
Mute S/W	Via RS-485	
Mute H/W	Short pin K with Pin M (M&C) connector	
Over Temperature Shutdown	$(82 - 2/+3)^0$ C. at case temperature, internally set	
Indicators	·	
RF Forward Power	Via RS-485	
RF Overdrive	N/A	
Over Temperature	Via RS-485	
Alarm Summary S/W	Via RS-485	
Alarm Summary H/W TTL Low - Alarm State Contact closure (Pin E opens from Pin H on a		
Temperature Sensor	Via RS-485	
LED	Green (operational) / Red (alarm)/Orange (muted)	
Power Supply	· ·	
Input	190-260 VAC, 50/60 Hz (1,000W)	
Power Factor correction	95%	
Output	12 VDC, 3.5 A	
Efficiency	85% nominal	
Design Technology	High frequency switching modules	
Mechanical Specifications		
Package	Outdoor, weather resistant	
Size (overall dimensions	16.3"x 11.4"x 9.2"	
Weight	54 lb (24.5 Kg)	
Cooling	Forced Air	
Exterior Surface Finish	Painted white	
Hardware	Stainless Steel	
O-ring	Silicone	

Connectors			
IF Input	N-type female		
RF Output	WR75 grooved		
RF Monitor	Type-N, female		
AC Power	MS3102R16-10P		
RS-485 M&C	MS3102R20-29S		
Markings	Labels permanent and	l legible	
1	Mitec Name, Part No &	k Revision Level	
2	Serial No.		
3	IF Input		
4	RF Output		
5	AC power 220AC only		
6	RS-485		
7	RF Sample		
Environmental	Operational	Storage	
Temperature	-40° to 60° C	-50° C to 85° C	
Humidity	5% to 95% at -40°C	5% to 95% at 65°C	
Altitude 10,000 ft AMSL 40,000 ft AMSL		40,000 ft AMSL	
Shock and Vibration	Normal transport and h	andling	
Wind	100 km/hr	N/A	
Drop	N/A	1m in shipping container	
Reliability			
MTBF (mean time between failures		bility data is not included. nce every 2 years minimum.	

2.3 General Considerations

The module shall meet all specifications over full bandwidth and under all environmental conditions when terminated with a load of VSWR at 1.5:1 unless otherwise specified. All RF specifications shall be met within five minutes after applying DC power, except gain stability, which shall be met after a warm-up period of twenty minutes. During the warm-up period, the module shall not exhibit any alarm or require an RF mute input signal to reset any alarm/fault latches.

2.4 Basic Mechanical Characteristics

2.4.1 External View of the Transmitter Module

The physical external dimensions of the transmitter module are shown in Figure 3 and Table 1. All inputs and outputs are shown in Figure 3.

2.4.2 Connections and Mounting Hardware

The IF input connection requires a coaxial cable with an N-type male connector for the RF Input. The RF output requires a waveguide with a WR75 flat flange. An O-ring shall be used to seal the waveguide connection. There are also two cylindrical connectors on the RF Input side of the RF amplifier for AC power and M&C interface. The pin assignments for these connectors are shown in section 3.1.3. Six screws (#1/4) and two brackets fasten the transmitter onto the mounting frame. See Figure 3 in Appendix A. Four cap screws (#6-32) and their respective lock washers fasten the antenna waveguide feeder on to the transmitter waveguide output flange. The mating connectors, hardware and O-ring are in the shipping container with the transmitter.

2.5 Assembly and Installation

Use the information in this section as a guide to assemble and install the transmitter module. The specified humidity is up to 100% during operation. However, installation should be carried out in dry conditions, free of salt spray or excessive humidity. This will eliminate the possibility of moisture and other foreign substances from entering the output waveguide flange.

CAUTION!

Only authorized technical personnel should perform the Installation and proper electrical hookups of the transmitter module.

2.5.1 Lifting the Transmitter Module into Position and Temporary Attachment

The transmitter module weighs approximately 25kg (55 lb), which should be handled by two persons. Remove all plastic caps from the connectors and output waveguide flange. Lift the transmitter module and install it on to the mounting frame opening. The transmitter module is now ready for permanent attachment.

The transmitter is designed to operate in an outdoor environment and is waterproof when mounted in the correct orientation as per Figure 1 and the orientation labels placed on the RF amplifier shroud.

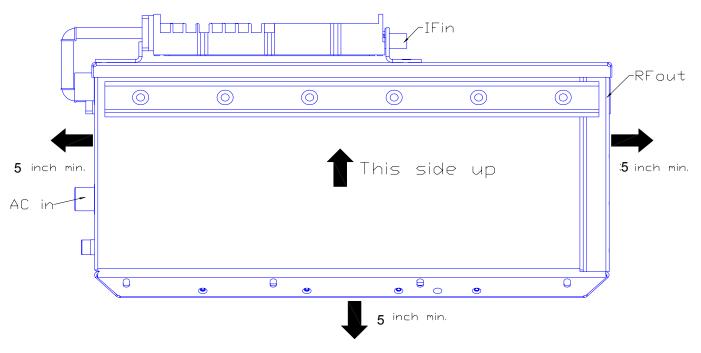
The transmitter contains a high flow-rate fan (600 CFM) for cooling the RF amplifier module. This fan functions continuously during the transmitter operation. To provide a sufficient airflow, the transmitter should be mounted with a *minimum clearance of 5 inches on all four sides and the bottom*. Refer to Figure 1. Adequate cooling for the transmitter will provide years of top performance.

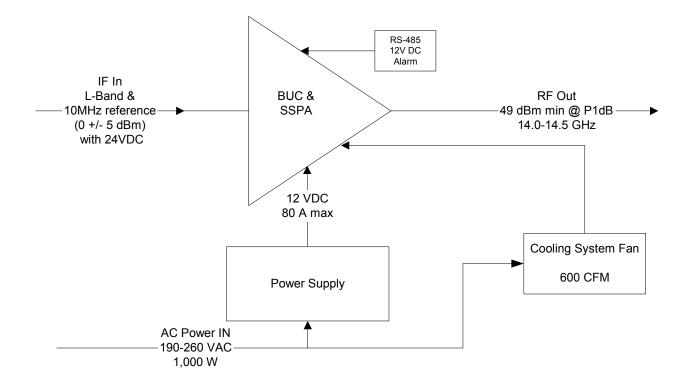
2.5.2 Securing the Transmitter Module

Secure the transmitter module onto the mounting frame using the hardware described in section 2.3.2. Align the transmitter output waveguide flange with the mating flange of the antenna feeder waveguide. Using the O-ring and hardware provided connect the antenna feeder waveguide. Torque the flange screws to 16 inch-pounds (1.8 N-m). Attach the proper cables for waveguide for IF input, AC power and M&C to the corresponding connectors of the transmitter module. Refer to Figure 3 in Appendix A.

NOTE

The cylindrical connectors are labeled clearly and have different pin layouts. Refer to Figure 3. It is impossible to incorrectly install the mating connectors.




Figure 1 – Recommended Distance for Mounting on the Hub

2.6 Functional Overview

2.6.1 General

This section describes the transmitter module functions in detail. The functional overview explains the RF amplification, monitor & control and power distribution.

Figure 2 block diagram illustrates the transmitter module.

Figure 2 - System Block Diagram

2.6.2 IF/RF Conversion and Amplification

The IF Input signal with a 10MHz reference, 0-/+5dBm and 24VDC, 1.0A nominal enters the BUC by a coaxial cable, converted to Ku-Band by the BUC and goes through an isolator, which provides a good VSWR at the input. Under normal operation, the RF amplifier will amplify the RF Input signal level up to a power level of 49 dBm (80 Watts CW) P1dB minimum. For small signal gain, the transmitter module is capable of providing a gain of approximately 75 dB.

To achieve the rated output power, GaAs transistors, as well as other microwave components within the RF Amplifier, provide the necessary gain and low insertion loss. The amplified signal is transmitted through the output waveguide section to a satellite up-link system.

2.6.3 Monitor and Control

The transmitter has an RS-485 serial interface. The transmitter can communicate to the indoor unit or redundancy control module via RS-485. (For RS-485 Protocol Specifications, see Appendix B)

The control system can provide the following M&C functions:

- System Alarm: when an amplifier is not functioning properly, TTL logic will activate an alarm (TTL low: alarm state). The alarm signal will be transmitted via RS-485 as well as through two analogue wires in order to support the redundancy option.
- Mute Control (via RS-485)
- Mute Control (via hardware line): Short pin K with Pin M (M&C connector)
- Output Power Monitoring: 15 dB dynamic range (via RS-485)

Base Plate Temperature Monitoring (via RS-485)

The SSPA can also provide 12VDC (3.5A max) at the same connector to supply DC power for redundancy control.

2.6.4 Internal Power Distribution Reference

The SSPA operates from power source of 190 VAC to 260 VAC, 50 Hz to 60 Hz and will consume 1,000-Watts maximum.

CAUTION!

There is an internal slow blowing fuse installed in the power supply module in order to protect the entire system from over current.

This unit is not intended to work with 110 volts. Do not attempt to use at this voltage. Damage to the unit will occur.

The power supply converts the incoming AC voltage into two separate DC voltages. The DC voltages are regulated to ensure isolation and stability. The module provides:

• 12 VDC, 80 A maximum to the RF amplifier circuits

3 Operation

This chapter describes the verification of the operation and control of the transmitter module. It shall be performed by authorized personnel prior to maintenance and/or repair.

3.1 Procedure

Verify that the installation procedure described in Chapter 2 was completed. A complete physical check of the customer's system is suggested.

WARNING!

The output power available at the output waveguide flange is extremely hazardous. Under **no circumstances** should be transmitter be operated without the waveguide feed or a high power load attached. Do not operate this equipment in the presence of flammable gases or fumes. Failure to observe this precaution will result in personal injury. Safe and careful installation of this transmitter will eliminate the possibility of accidents and provide years of top performance.

Verify the antenna feed waveguide connection is properly done before the transmitter is energized.

NOTE

The transmitter module can withstand any source or load VSWR. However, the transmitter module will meet all specification requirements only if the source/load VSWR is sufficient (see Section 7.1.20).

Normal operation is not possible if the antenna feeder VSWR is greater than 1.5:1.

Turn ON the power and allow a warm up period of twenty minutes before operating the transmitter module. This will assure stable gain and power. The transmitter module can function with a coupler when a direct measurement of the output power is made.

CAUTION!

It is strongly recommended not to exceed -20 dBm maximum RF Input level. The RF amplifier will be in deep saturation if overdriven. RF performance will degrade significantly, and proper operation is not possible. This operational condition is the survival mode for the transmitter module. Never exceed the maximum safe RIF Input level of -10dBm (100 mW) or permanent damage to the transmitter module may result.

Verify the status of the System Fail signal from the M&C interface using the RS-485 protocol. (Protocol description is attached to this manual.)

3.1.1 Interface

The Mitec High Power Amplifier, WTX-14014549-75-ES-50 interface is shown in Table 2 below.

Connector Name	Туре	Pin #	Signal Name	Description	Parameter
J1 "IF IN"	N-type female	N/A	IF In	IF Input 10 MHz Ref. In	L-Band + 10 MHz + DC
J2 "RF OUT"	WR137	N/A	RF Out	RF Output	50 dBm, max
		Α	L	Line	190-260 VAC
J3 "AC Input"	MS3102R16-10P	В	GND	Ground	50 - 60 Hz
		С	N	Neutral	50 - 00 HZ
		Α	TX+(output to)		RS-485 Interface
		В	TX-	RS-485	Half Duplex/
		С	RX+(input from)	105-405	Full Duplex
		D	RX-		(Configurable)
		Е	Reserved	Reserved	Reserved
		F	AL_Sum	System_Alarm	Alarm TTL Low
		G	GND	Ground	Signal GND
		Н	Reserved	Reserved	Reserved
		J	GND	Ground	DC GND
J4 "RS-485"	MS3102R20- 29S	K	M_I	Mute In	To Mute short Pin K to Pin M
		L	+12V	+12 VDC Out	+12 VDC 3.5A max
		Μ	M_I_Com	Mute in Common	
		Ν	AL_Sum_NO	Summary Alarm Normally Open	Pin E opens from Pin H on Alarm
	-	Р	AL_Sum_NC	Summary Alarm Normally Closed	Pin E closes from Pin H on Alarm
		R	N/C	N/C	N/C
		S	N/C	N/C	N/C
		Т	AL_Sum_Comm	Alarm Common	
J5 "RF Sample"	SMA female	N/A	RF sample	RF sample output	P _{OUT} - 45dB, typ.

Table 2 – Connector Pin Assignments

Maintenance

This chapter contains information on how to maintain, troubleshoot and repair the transmitter module. The transmitter module is extremely reliable, requiring very little preventive maintenance, or repair. Should there be a malfunction, this chapter also contains technical information to help diagnose basic failures.

4.1 Preventive Maintenance

4.1.1 Procedure

WARNING!

Shut down the transmitter module before disassembly and remove all cables and connectors. Failure to observe this precaution may result in personal injury or death. This includes the removal of any RF power originating from other system components.

When the transmitter module is in the hot stand-by mode in a redundant system, switch it to the operation mode at least once every three months. Make sure the fan is running while in operation mode.

When the transmitter module is in the cold stand-by mode in a redundant system, switch it to the operation mode at least once every three months. Make sure the fan is running while in operation mode.

4.1.2 Transmitter Module Cooling System Preventive Maintenance

Preventive maintenance is limited to checking the performance of the transmitter module cooling system. No electrical or mechanical adjustments are required for normal operation.

The cooling system used a very high flow rate fan- 600CFM. Air is pulled from the front side and is expelled on the RF OUT side. The high CFM may cause an excessive amount dust and debris to collect at the intake openings (input side). Airflow openings must be cleaned regularly.

The fan is the least reliable item in the transmitter module. Wearing of the fan bearings will cause the RPM to drop and will create a higher than average heat-sink temperature. It is recommended to replace the fan after 2 years of operation.

4.1.3 Performance Check

Verify the system is properly set up as per Chapters 2 and 3. The power output at 1 dB compression shall be measured for evaluating the performance of the transmitter module.

It is recommended to measure the following parameters for ensuring that the transmitter module is in good working condition:

- Gain and Gain flatness
- RF load VSWR and RF source VSWR
- Two-Tone Intermodulation Distortion
- Return Loss at connectors J1 and J2 of the TRANSMITTER MODULE

Using a Source and an IF input signal level within the small signal region of the transmitter module, measure the power level at connectors J1 and J2. See Table 2. Plot the swept response on a test data sheet. From the plot, determine gain and gain flatness.

With an IF Input signal level within the small signal region of the transmitter module, measure the VSWR (Return Loss) at connectors J1 and J2. See Table 2. Plot the swept return loss for both the IF Input and RF Output signals on a test data sheet. From the plot determine the return loss.

From the output power measurements determine P1dB. Record value on a test data sheet.

Measure the Two-tone Intermodulation Suppression using two equal signals separated by 5 MHz. Record value on test data sheet.

4.1.4 Troubleshooting

WARNING!!

Cable connection and disconnection shall be done carefully to avoid physical damage to the cables and connectors, which may cause intermittent problems in the future.

Use Table 1 to quickly isolate a fault within the transmitter module. If the transmitter module is defective, notify Mitec and follow the process detailed in section 1.1.2.

Symptom	Action
Fails performance test	Check power source, RF source, cabling and connectors. Check for clogged fan and debris in heat-sink fins. Clean thoroughly. If fan is worn, replace fan. If correct, transmitter module is defective. Return transmitter module to Mitec.

Table 3 - Recommended Corrective Actions

4.1.5 Out-of Warranty Repair

A non-warranty and out-of-warranty repair service is available from **Mitec** for a nominal charge. The customer is responsible for paying the cost of shipping the SSPA both to and from **Mitec** for these repairs.

Appendix A

Drawings & Schematic Diagrams

WTX-14014549-75-ES-50 Outline Drawing

mitec

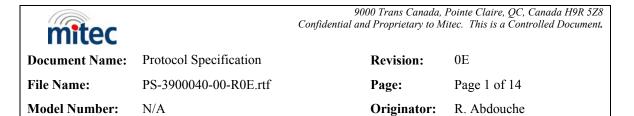


Figure 3 – Outline Drawing

Appendix B

Serial Protocol

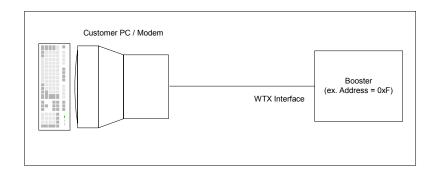
Appendix B contains the serial protocol documentation applicable to this product.

Revision	Date	Change Summary	Approval
0A	22-Apr-2003	Preliminary specification sent to customer.	C. Villeneuve
0B		Document does not exist.	
0C		Document does not exist.	
0D	04-Dec-2003	Extracted protocol specs from technical specs document.	C. Villeneuve
0E	16-Jan-04	Completely revamped the document format. No functional changes made.	C. Villeneuve

Serial Communication Protocol Specification For Control Software 3900040-00

Table of Contents

1 Document legend	3
2 Project Overview	
3 Definitions and acronyms	
4 Scope	
5 Serial Communications Link Interface	
5.1 Customer Interface Port Configuration	
5.2 Customer Interface Cable Connections	
6 Communication Protocol Framing	6
6.1 SCI Packet Frame Format	6
6.1.1 SCI Packet Byte Description	6
6.1.2 Default Address Values	7
6.1.3 CRC Calculation Example	7
6.1.4 Command / Reply Packet Sequencing	7
7 Command List	
7.1 Default Reply Packet Format	
7.2 GET Status Command List	9
7.3 GET Alarms Command List	
7.4 SET Control Command List	12
8 Appendix I: Troubleshooting Guide	13


Page 2 of 14 31-01-05 9:51 AM

1 Document legend

Text in this document highlighted in grey identifies features which are planned but not implemented yet.

2 **Project Overview**

This document describes the communications protocol used to communicate with high-power transmitter modules (ODUs) configured with embedded software 3900040-00 when used in a stand-alone configuration.

Figure 1) System Block Diagram

If the Booster is configured in a redundant configuration or is connected through a transceiver, then the communications protocol for the redundant kit or transceiver supercedes the present document.

3 Definitions and acronyms

The following terms appear throughout this document:

Controller:	The microprocessor-based card and associated embedded software which handles all communications between the customer interface and the amplifier.
CRC:	Cyclic Redundancy Check
Customer Interface Port:	The interface port through which the device used by the customer will interact with the Transceiver (ie. typically a modem or PC).
Customer Interface Device:	The interface device used by the customer to interact with the Transceiver (ie. typically a modem or PC).
PC:	Personal Computer.
RF:	Radio Frequency.
SCI:	Serial Communications Interface.
WBT:	Wavesat Bias Tee Unit
WTX:	Wavesat Transmitter

4 Scope

This document covers all aspects of the communication protocol which are required for the customer to develop a controlling device (typically a PC application program or modem) to interface with the Mitec product.

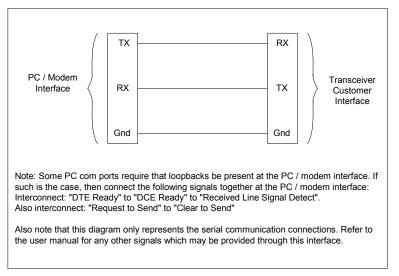
Page 3 of 14 31-01-05 9:51 AM

5 Serial Communications Link Interface

5.1 Customer Interface Port Configuration

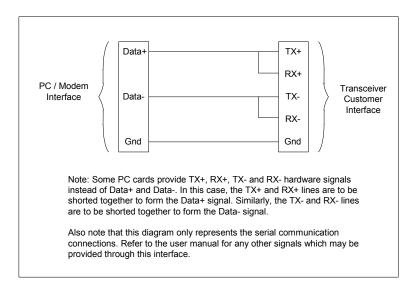
The customer interface port of the controller is configured as follows:

Baud Rate:	19200bps
Data bits:	8
Stop bits:	1
Parity:	None
HW Control	None

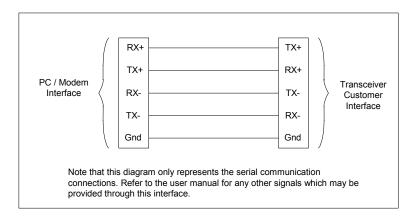

5.2 Customer Interface Cable Connections

This software protocol remains the same regardless of the transport medium used (ie RS232, RS485 half duplex or RS485 full duplex). This section defines the wiring required to communicate with the Mitec product.

Note that the pin numbers on both side of the cable are deliberately omitted since these will vary depending on the Mitec product as well as the PC / Modem interface. Please refer to the specific user manuals for pin allocations.


Please refer to the user manual for the Mitec product if unsure of the customer interface transport medium.

For RS232:


Figure 2) RS232 Customer Interface Wiring

For RS485 Half Duplex:

Figure 3) RS485 Half Duplex Customer Interface Wiring

For RS485 Full Duplex (ie RS422):

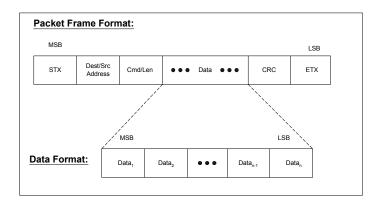


Figure 4) RS485 Full Duplex (ie RS422) Customer Interface Wiring

6 Communication Protocol Framing

6.1 SCI Packet Frame Format

The packets exchanged with the master controller will have the following format (regardless of direction):

Figure 5) SCI Packet Frame Format

6.1.1 SCI Packet Byte Description

- STX is the start transmission byte (defined as 0x7E). This byte is used to determine the start of a packet.
- **Dest/Src Address** contains the destination address in the high nibble and the source address in the low nibble. The destination address is the address of the device which is to process the packet. The source address is the address of the device which sent the packet. Note that the device address of the customer interface device is always = 0x0F.
- CMD/Len contains the packet command in the high nibble and the number of bytes in the data portion of the packet in the lower nibble.

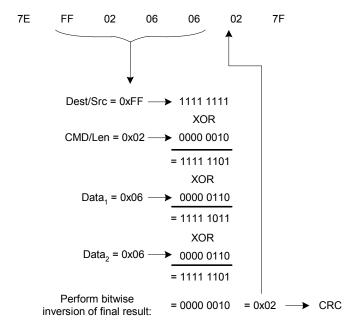
The following commands may be sent by the customer interface device:

GET (command high nibble = 0x0)
SET (command high nibble = 0x1)Request the current value of a database element.
Set the database element to the specified value.The following commands may be returned to the customer interface device:
UPD (command high nibble = 0x8)
ACK (command high nibble = 0xE)
NACK (command high nibble = 0xF)Return the current value of a database element.
Acknowledge a received packet.
Reject a received packet (Not ACKnowledge).

- **Data**₁ **Data**_n contains the packet payload. The value of the data bytes is specific to the command and will be covered in following sections.
 - CRC is the cyclic redundancy check and is calculated by performing a byte-wise exclusive OR of the Dest/Src address byte, Cmd/Len byte and all data bytes. A bit-wise inversion is then applied to the CRC before being inserted into the packet.
 - ETX is the end transmission byte (defined as 0x7F). This byte is used to determine the end of a packet.

Page 6 of 14 31-01-05 9:51 AM

6.1.2 Default Address Values


The customer interface device must always be assigned address 0xF.

The Transceiver device address is factory defaulted to 0xF. It may be set by the customer using the SET Transceiver Address command (refer to SET Control Command List).

The Booster device address is factory defaulted to 0xE. It may be set by the customer using the SET Booster Address command (refer to SET Control Command List).

6.1.3 CRC Calculation Example

To send a command to read the temperature (database element = 0x0606) from the Booster (device address 0x0F), the command is:

6.1.4 Command / Reply Packet Sequencing

The Transceiver will never send a packet to the customer interface device unless a command is received. In other words, the Transceiver will not speak unless spoken to.

Page 7 of 14 31-01-05 9:51 AM

7 Command List

7.1 Default Reply Packet Format

This section identifies the packet format the ACK (Acknowledge) and NACK (Not acknowledge) replies which may be sent to the customer interface device in response to a received command.

NOTE: The packets shown in the list below are based on the assumption that the Booster device address is set to 0xF. To modify the commands for different addresses, the Dest/Src byte and the CRC byte will have to change in all packets.

Reply	Packet Format	Explanation	Interpretation	Examples
ACK (Acknowledge)	7E FX E0 ZZ 7F	Acknowledge that the received packet was properly processed.	X = Device address of the packet source device. ZZ = CRC.	1) reply: 7E FF E0 E0 7F (ACK reply sent from the Booster)
NACK (Not Acknowledge)	7E FX F1 YY ZZ 7F	Indicate that a problem was encountered with the received packet.	 X = Device address of the packet source device. YY = Error code (03 = Incorrect CRC 18 = Unrecognized command 30 = Set command attempted on a restricted database element) ZZ = CRC. 	 reply: 7E FF F1 03 F2 7F (NACK reply sent from the Booster for an invalid CRC) reply: 7E FF F1 18 E9 7F (NACK reply sent from the Booster for an unrecognized command).

—

7.2 GET Status Command List

This section identifies the list of commands available to query any unit for status information.

NOTE: The packets shown in the list below are based on the assumption that the Booster device address is set to 0xF. To modify the commands for different addresses, the Dest/Src byte and the CRC byte will have to change in all packets.

Command	Packet Format	Explanation	Possible Replies	Interpretation	Examples
Get Booster Temperature	7E FF 02 06 06 02 7F	Query booster for current temperature	Update Booster Temp: 7E FF 84 06 06 TT TT ZZ 7F	TT TT = Booster temp in $^{\circ}$ C + 273. ZZ = CRC.	1) cmd: 7E FF 02 06 06 02 7F reply: 7E FF 84 06 06 01 02 87 7F (Temp = 0x0102 = 0d258 - 273 = -15°C) 2) cmd: 7E FF 02 06 06 02 7F reply: 7E FF 84 06 06 01 34 B1 7F
			NACK	Refer to 7.1.	$(\text{Temp} = 0x0134 = 0d308 - 273 = +35^{\circ}\text{C})$
Get Booster Temperature Sensor Voltage	7E FF 02 2F FF D2 7F	Query booster for current temperature sensor voltage (Note: This command is to be used if a more accurate temperature reading is required than the result of the "Get Booster Temperature" command.)	Update Booster Temp Sensor: 7E FF 84 2F FF VV VV ZZ 7F	VV VV = Booster temp sensor voltage from 0V (0x0000) to +5V (0x03FF). The conversion formula is: Temp = (Voltage x 0.4883) – 273. ZZ = CRC.	1) cmd: 7E FF 02 2F FF D2 7F reply: 7E FF 84 2F FF 02 06 50 7F (Voltage = 0x0206 = 0d518. Temp = (518 x 0.4883) – 273 = -20.1°C) 2) cmd: 7E FF 02 2F FF D2 7F reply: 7E FF 84 2F FF 02 76 20 7F (Voltage = 0x0276 = 0d630. Temp = (630 x 0.4883) – 273 = +34.6°C)
			NACK	Refer to 7.1.	
Get Booster Output Power	7E FF 02 17 FF EA 7F	Query booster for current output power	Update Booster Output Power: 7E FF 84 17 FF PP PP ZZ 7F	PP PP = Output power in 10 x dBm. ZZ = CRC.	1) cmd: 7E FF 02 17 FF EA 7F reply: 7E FF 84 17 FF 01 2C 41 7F (Power = 0x012C = 0d300 = 30.0dBm.) 2) cmd: 7E FF 02 17 FF EA 7F reply: 7E FF 84 17 FF 01 A0 CD 7F
			NACK	Refer to 7.1.	(Power = 0x01A0 = 0d416 = 41.6dBm.)
Get Booster Gain (if applicable)	7E FF 02 18 FF E5 7F	Query booster for current gain	Update Booster Gain: 7E FF 84 18 FF GG GG ZZ 7F	GG GG = Gain in 10 x dB. ZZ = CRC.	 cmd: 7E FF 02 18 FF E5 7F reply: 7E FF 84 18 FF 02 08 69 7F (Gain = 0x0208 = 0d520 = 52.0dB.) cmd: 7E FF 02 18 FF E5 7F reply: 7E FF 84 18 FF 01 95 F7 7F
			NACK	Refer to 7.1.	(Gain = 0x0195 = 0d405 = 40.5dB.)

Command	Packet Format	Explanation	Possible Replies	Interpretation	Examples
Get Mute Status	7E FF 02 06 01 05 7F	Query booster for mute status	Update Mute Status: 7E FF 84 06 01 00 MM ZZ 7F	MM = Mute status (0 = enabled; 1 = muted) ZZ = CRC.	1) cmd: 7E FF 02 06 01 05 7F reply: 7E FF 84 06 01 00 00 83 7F (Booster is enabled.)
					2) cmd: 7E FF 02 06 01 05 7F reply: 7E FF 84 06 01 00 01 82 7F (Booster is muted.)
			NACK	Refer to 7.1.	
Get IF Frequency	7E FF 02 16 FF EB 7F	Query transceiver for IF frequency	Update IF Frequency:	XX XX = System IF frequency in MHz.	1) cmd: 7E FF 02 16 FF EB 7F reply: 7E FF 84 16 FF 03 B6 D8 7F
			7E FF 84 16 FF XX XX ZZ 7F	ZZ = CRC.	(IF frequency set to $0x03B6 = 0d950$
			NACK	Refer to 7.1.	= 950 MHz)
Get Booster SW Version Base number (MSB)	7E FF 02 05 FC FB 7F	Query booster for SW version base MSB	Update SW Version Base MSB:	SW version base number MSB is always 0x3900.	1) cmd: 7E FF 02 05 FC FB 7F reply: 7E FF 84 05 FC 39 00 44 7F
			7E FF 84 05 FC 39 00 44 7F		cmd: 7E FF 02 05 FD FA 7F
			NACK	Refer to 7.1.	reply: 7E FF 84 05 FD 00 40 3C 7F
Get Booster SW Version Base number (LSB)	7E FF 02 05 FD FA 7F	Query booster for SW version base LSB	Update SW Version Base LSB:	XX XX = SW version base number (LSB). ZZ = CRC.	cmd: 7E FF 02 05 FE F9 7F reply: 7E FF 84 05 FE 00 00 7F 7F
			7E FF 84 05 FD XX XX ZZ 7F		cmd: 7E FF 02 05 FF F8 7F
			NACK	Refer to 7.1.	reply: 7E FF 84 05 FF 30 41 0F 7F
Get Booster SW Version Configuration	7E FF 02 05 FE F9 7F	Query booster for SW version configuration	Update SW Version Config:	XX = SW version configuration. ZZ = CRC.	The resulting software version is:
			7E FF 84 05 FE 00 XX ZZ 7F		3900040-00-R0A
			NACK	Refer to 7.1.	
Get Booster SW Version Revision	7E FF 02 05 FF F8 7F	Query booster for SW version revision	Update SW Version revision: 7E FF 84 05 FF RR RR ZZ 7F	RR RR = SW version revision represented as two ASCII characters. ZZ = CRC.	
			NACK	Refer to 7.1.	
Get Booster Device Address	7E FF 02 03 04 05 7F	Query booster for device address	Update booster device address:	XX = Booster device address. $ZZ = CRC.$	1) cmd: 7E FF 02 03 04 05 7F reply: 7E FF 84 03 04 00 0A 89 7F (Booster device address = 0xA)
			7E FF 84 03 04 00 XX ZZ 7F NACK	Refer to 7.1.	2) cmd: 7E FF 02 03 04 05 7F reply: 7E FF 84 03 04 00 0E 8D 7F
					(Booster device address = $0xE$)

_

7.3 GET Alarms Command List

This section identifies the list of commands available to query any unit for alarm information.

NOTE: The packets shown in the list below are based on the assumption that the Booster device address is set to 0xF. To modify the commands for different addresses, the Dest/Src byte and the CRC byte will have to change in all packets.

Command	Packet Format	Explanation	Possible Replies	Interpretation	Examples
Get Booster Over Temperature Alarm	7E FF 02 00 02 00 7F	Query booster for over temperature alarm	Update booster over temperature alarm: 7E FF 84 00 02 00 XX ZZ 7F	XX = Alarm state (0 = no alarm; 1 = alarm) ZZ = CRC.	1) cmd: 7E FF 02 00 02 00 7F reply: 7E FF 84 00 02 00 01 87 7F (Booster over temp alarm is raised)
			NACK	Refer to 7.1.	2) cmd: 7E FF 02 00 02 00 7F reply: 7E FF 84 00 02 00 00 86 7F (Booster over temp alarm is clear)
Get Booster Low Power Alarm (if applicable)	7E FF 02 00 05 07 7F	Query booster for low power alarm	Update booster low power alarm: 7E FF 84 00 05 00 XX ZZ 7F NACK	XX = Alarm state (0 = no alarm; 1 = alarm) ZZ = CRC. Refer to 7.1.	 cmd: 7E FF 02 00 05 07 7F reply: 7E FF 84 00 05 00 01 80 7F (Booster low power alarm is raised) cmd: 7E FF 02 00 05 07 7F reply: 7E FF 84 00 05 00 08 1 7F
Get Booster Summary Alarm	7E FF 02 00 0F 0D 7F	Query booster for summary alarm	Update booster summary alarm: 7E FF 84 00 0F 00 XX ZZ 7F	XX = Alarm state (0 = no alarm; 1 = alarm) ZZ = CRC.	(Booster low power alarm is clear) 1) cmd: 7E FF 02 00 0F 0D 7F reply: 7E FF 84 00 0F 00 01 8A 7F (Booster summary alarm is raised)
			NACK	Refer to 7.1.	2) cmd: 7E FF 02 00 0F 0D 7F reply: 7E FF 84 00 0F 00 00 8B 7F (Booster summary alarm is clear)

_

7.4 SET Control Command List

This section identifies the list of commands available to set control parameters any unit.

NOTE: The packets shown in the list below are based on the assumption that the Booster device address is set to 0xF. To modify the commands for different addresses, the Dest/Src byte and the CRC byte will have to change in all packets.

Command	Packet Format	Explanation	Possible	Interpretation	Examples
			Replies		
Set Mute Control	7E FF 14 13 01 00 MM ZZ 7F	Mute / Unmute the up link. MM = Mute control (1 =	ACK	Refer to 7.1.	1) cmd: 7E FF 14 13 01 00 01 07 7F reply: ACK (Mute up link)
		Mute; 0 = enable) ZZ = CRC	NACK	Refer to 7.1.	2) cmd: 7E FF 14 13 01 00 00 06 7F reply: ACK (Enable up link)
Set IF Frequency	7E FF 14 16 FF XX XX ZZ 7F	Set up link frequency XX XX = Frequency in MHz. ZZ = CRC	ACK	Refer to 7.1.	 1) cmd: 7E FF 14 16 FF 03 B6 48 7F reply: ACK (Set IF frequency to 950 MHz = 0x3B6) 2) cmd: 7E FF 14 16 FF 04 33 CA 7F reply: ACK (Set IF frequency to 1075 MHz = 0x433) 3) cmd: 7E FF 14 16 FF 04 B0 49 7F
			NACK	Refer to 7.1.	 s) cmit. 7D T1 416 T1 64 D6 45 77 reply: ACK (Set IF frequency to 1200 MHz = 0x4B0) 4) cmd: 7E FF 14 16 FF 05 2D D5 7F reply: ACK (Set IF frequency to 1325 MHz = 0x52D) 5) cmd: 7E FF 14 16 FF 05 AA 52 7F reply: ACK (Set IF frequency to 1450 MHz = 0x5AA)
Set Booster Device Address	7E FF 14 03 04 00 XX ZZ 7F	Set booster device address $(0 \le address \le 0xE)$	ACK	Refer to 7.1.	1) cmd: 7E FF 14 03 04 00 0A 19 7F reply: ACK (Set Booster device address to 0xA)
			NACK	Refer to 7.1.	2) cmd: 7E FF 14 03 04 00 0E 1D 7F reply: ACK (Set Booster device address to 0xE)

8 Appendix I: Troubleshooting Guide

Problem		Possible Remedies
No response at all from Booster	1)	Ensure the cable assembly is wired properly (refer to 5.2Customer Interface Cable Connections) and that it is properly connected between the transceiver customer interface port and the customer device.
	2)	Verify that the com port parameters are as specified in 5.1Customer Interface Port Configuration.
	3)	Confirm that the customer interface cable is connected to the correct PC com port.
	4)	Ensure that there are no other applications executing on the same com port.
	5)	If the transport medium is RS232, then connect the loopbacks identified in the note in Figure 2) RS232 Customer Interface Wiring.
	6)	If using a Booster address other than 0xF, then send a "GET Booster Device Address" command to destination address 0xF. The reply will contain the current booster address. Note that the booster will respond to all commands received with destination address 0xF.
	7)	If the transport medium is RS485 half duplex, note that some PC cards require software control of the RS485 transmit and receive buffer enable lines. The software in the customer device may need to coordinate the enabling /disabling of these buffers.
	8)	Ensure the booster is powered on.
Reply packet is incomplete.	1)	If software control of the transmit and receive buffer enable lines is required (RS485 half duplex), then it is possible that the timing between the transition needs to be adjusted.

_

Appendix C

Spare Parts

Appendix C contains a table of recommended spare parts for on-hand replacement. The following sheet can be copied and used as a fax form to order the required spare parts. Please make sure to include all identifying information to facilitate the processing of your order. The order may also be sent via email or regular mail delivery, at the following address.

Mitec Telecom inc.

9000 Trans Canada Hwy. Pointe Claire, Québec, Canada H9R 5Z8

Fax: (514)694-3814 Email: egregoire@mitectelecom.com

For additional information, please contact our customer service department at: (514) 694-9000 or 1-800-724-3911

This page has been intentionally left blank.

designers and manufacturers of telecom & wireless products ISO 9001 Certified

WTX-14014549-75-ES-50 80 Watt, 14.0-14.5 GHz High Power Transmitter Module

Spare Parts Order Form

From:					
Place By:		Signature:			
Telephone:					
Fax		Email:			
Pari	t Description	Part Number	Quantity	Unit Price*	Line Total*

* To be completed by Mitec Sales Department

Fax to: Customer Service (514) 694-3814

This page has been intentionally left blank.

Appendix D

Bench Test Record

Appendix D contains the Bench Test Record used to record test data for this product.

9000 Trans Canada, Pointe-Claire, Quebec, Canada H9R 5Z8

Document:	BR-WTX-14014549-75-ES-50-R01.doc	Date:	March 7, 2006
Number:	WTX-14014549-75-ES-50	Page:	1 of 3
Rev:	01	Originator:	G.C.
Title:	L- to Ku-Band 80W 75 dB Gain ODU	Approval:	M.L.

Revision	Date	Change Summary	Approval
0A	March 7, 2006	Initial Release	ML
01	April 5, 2006	ECN 143-06S	ML

Serial Number: _____

Tested by: _____

Crock	Deremet	0.50	Input Frequency						
Spec		F1=950MHz F2=1050MHz F3=1150MHz F4=1250MHz F ut Frequency, (GHz) 14.0 14.1 14.2 14.3		F5=1350MHz	F6=1450MHz				
1	Output Frequency, (GHz) 14.0-14.5GHz -40°C _{AMB}		14.0	14.1	14.2	14.3	14.4	14.5	
		-40°C _{AMB}							
2	Gain , (dB) 75 dB typ	+25°C _{AMB}							
		+55°C _{AMB}							
	Gain flatness, (dB) ±2.5dB nom	-40°C _{AMB}		•					
3		+25°C _{AMB}							
		+55°C _{AMB}							
		49.0dBm, typ. -40°C _{AMB}							
4	Output Power P _{1dB} ,	49.0dBm, min.							
	(dBm)	+25°C _{AMB}							
		49.0dBm, typ. +55°C _{AMB}							
5	IMD, (dBc)		F _c = 14	$F_c = 14.25 \text{ GHz}$ $F_c = 14.25 \text{ GHz}$ $F_c = 14.50 \text{ GHz}$		50 GHz			
6	Spurious in Band , (dB -50dBc max, P _{OUT} =P _{1dB}	Bc)							
7	Spurious out of Band -50dBc max, P _{OUT} =P _{1dB}								
8	Phase Noise, (dBc/Hz) F_c =14.25GHz, offset from -60dBc/Hz @ 300Hz -70dBc/Hz @ 1KHz -80dBc/Hz @ 10KHz -90dBc/Hz @ 100KHz -100dBc/Hz @ 1MHz 2.2 degrees max from 300Hz up to 1MHz	om F _c	dBc/Hz @ 300Hz dBc/Hz @ 1KHz dBc/Hz @ 10KHz dBc/Hz @ 100KHz dBc/Hz @ 1MHz degrees max from 300Hz up to 1MHz						
9	Temperature Shut	T _{AMBIENT} +60°C min.							
J	Down, (°C)	T _{HOT SPOT} +85°C max.							
10	RF Monitor Port , (dBc -45dBc typ.		F _c = 14	.00 GHz	F _c = 14.	25 GHz	F _c = 14.	50 GHz	
11	Output RL -18dB min	I.							

Date:

9000 Trans Canada, Pointe-Claire, Quebec, Canada H9R 5Z8

Document: BR-WTX-14014549-75-ES-50-R01.doc

Revision: 01

Monitor and Control Interface Test.

1.	Mute Control H/W	Contact Closure	Passed/Failed
2.	Mute Control S/W	via RS-485	Passed/Failed
3.	Temperature monitor	via RS-485	Passed/Failed
4.	Output Power Detector	via RS-485	Passed/Failed
5.	System Alarm H/W	Relay Contact Closure	Passed/Failed
6.	System Alarm H/W	TTL alarm	Passed/Failed
7.	System Alarm S/W	via RS-485	Passed/Failed
8.	Redundant voltage	12 Volts between L & J	Passed/Failed
9.	LED	Green (Normal op.) Red (alarm) Orange (muted)	Passed/Failed Passed/Failed Passed/Failed

10. Output Power Detector (See attached tables)

Plots And Graphs To Be Attached:

-Test Spec 2 - <i>Gain vs Frequency</i> (T _{AMB} : -40°C, +25°C, +55°C)	p.
-Test Spec 4 - Pin vs Pout (F_C : F1, F3, F6 and T_{AMB} : -40°C, +25°C, +55°C)	p.
-Test Spec 5 (optional) - <i>IMD</i> (T _{AMB} = +25°C)	p.

9000 Trans Canada, Pointe-Claire, Quebec, Canada H9R 5Z8

Document: BR-WTX-14014549-75-ES-50-R01.doc

Revision: 01

Page: 3 of 3

Interfaces

Connector Name	Туре	Pin #	Signal Name	Description	Parameter
J1 "IF IN"	N-type female	N/A	IF In	IF Input 10 MHz Ref. In	L-Band + 10 MHz + DC
J2 "RF OUT"	WR137	N/A	RF Out	RF Output	50 dBm, max
		Α	L	Line	190-260 VAC
J3 "AC Input"	MS3102R16-10P	В	GND	Ground	50 – 60 Hz
·		С	N	Neutral	50 - 00 HZ
	MS3102R20-29S	Α	TX+(output to)	RS-485	RS-485
		В	TX-		Interface
		С	RX+(input from)		Half Duplex/
		D	RX-		Full Duplex
J4 "RS-485"		U	KX-		(Configurable)
		E	Reserved	Reserved	Reserved
		F	AL_Sum	System_Alarm	Alarm TTL Low
		G	GND	Ground	Signal GND
		Н	Reserved	Reserved	Reserved
		J	GND	Ground	DC GND
		К	M_I	Mute In	To Mute short Pin K to Pin M
		L	+12V	+12 VDC Out	+12 VDC 3.5A max
		М	M_I_Com	Mute in Common	
		N	AL_Sum_NO	Summary Alarm Normally Open	Pin E opens from Pin H on Alarm
		Р	AL_Sum_NC	Summary Alarm Normally Closed	Pin E closes from Pin H on Alarm
		R	N/C	N/C	N/C
		S	N/C	N/C	N/C
		Т	AL_Sum_Comm	Alarm Common	
J5 "RF Sample"	SMA female	N/A	RF sample	RF sample output	P _{OUT} - 45dB, typ.

Power detector table

Pout (dBm)	14.00 GHz	14.25 GHz	14.50 GHz
49			
47			
42			
35			
29			